
Polly - Polyhedral optimization in LLVM

Tobias Grosser
Universität Passau

Ohio State University
grosser@fim.uni-

passau.de

Hongbin Zheng
Sun Yat-Sen University

st04zhhb@mail2.sysu.edu.cn

Raghesh Aloor
Indian Institute of Technology

Madras
raghesh@cse.iitm.ac.in

Andreas Simbürger
Universität Passau

andreas.simbuerger@uni-
passau.de

Armin Größlinger
Universität Passau

armin.groesslinger@uni-
passau.de

Louis-Noël Pouchet
Ohio State University

pouchet@cse.ohio-
state.edu

ABSTRACT
Various powerful polyhedral techniques exist to optimize
computation intensive programs effectively. Applying these
techniques on any non-trivial program is still surprisingly
difficult and often not as effective as expected. Most poly-
hedral tools are limited to a specific programming language.
Even for this language, relevant code needs to match spe-
cific syntax that rarely appears in existing code. It is there-
fore hard or even impossible to process existing programs
automatically. In addition, most tools target C or OpenCL
code, which prevents effective communication with compiler
internal optimizers. As a result target architecture specific
optimizations are either little effective or not approached at
all.

In this paper we present Polly, a project to enable polyhe-
dral optimizations in LLVM. Polly automatically detects and
transforms relevant program parts in a language-independent
and syntactically transparent way. Therefore, it supports
programs written in most common programming languages
and constructs like C++ iterators, goto based loops and
pointer arithmetic. Internally it provides a state-of-the-art
polyhedral library with full support for Z-polyhedra, ad-
vanced data dependency analysis and support for external
optimizers. Polly includes integrated SIMD and OpenMP
code generation. Through LLVM, machine code for CPUs
and GPU accelerators, C source code and even hardware
descriptions can be targeted.

Keywords
Loop Transformation, OpenMP, Polyhedral Model, SIMD,
Tiling, Vectorization

1. INTRODUCTION
Today, effective polyhedral techniques exist to optimize com-
putation intensive programs. Advanced data-locality opti-
mizations are available to accelerate sequential programs [6].
Effective methods to expose SIMD and thread-level paral-
lelism were developed and are used to offload calculations to
accelerators [3, 2]. Polyhedral techniques are even used to
synthesize high-performance hardware [15].

Yet, the use of programming-language-specific techniques
significantly limits their impact. Most polyhedral tools use
a basic, language specific front end to extract relevant code

regions. This often requires the source code to be in a canon-
ical form, disallowing any pointer arithmetic or higher lev-
el language constructs like C++ iterators and prevents the
optimization of programs written in languages like Java or
Haskell. Nevertheless, even tools that limit themselves to
a restricted subset of C may apply incorrect transforma-
tions, as the effects of implicit type casts, integer wrapping
or aliasing are mostly ignored. To ensure correctness manual
annotation of code that is regarded safe to optimize is of-
ten required. This prevents automatic transformations and
consequently reduces the impact of existing tools.

In addition, significant optimization opportunities are missed
by targeting a programming language like C and subse-
quently passing it to a compiler. Effective interaction be-
tween polyhedral tools and compiler internal optimizations
are prevented. The only possible way to pass information
are source code annotations like C pragmas. As influencing
performance related decisions of the compiler is difficult, the
resulting program often suffers from poor register allocation,
missed SIMDization or similar problems.

The low level virtual machine (LLVM) [13] is a set of tools
and libraries to build a compiler. Constructed around a
language and platform-independent intermediate represen-
tation (IR) it provides state-of-the-art analyses, optimiza-
tions and target code generation. Besides production qual-
ity support for x86-32, x86-64 and ARM, there is target
code generation for the C programming language, various
GPU accelerators or even hardware descriptions. There exist
LLVM based static and just-in-time compilers for nine of the
ten most used programming languages [14]. Furthermore,
there are OpenCL compilers developed by Apple, AMD and
NVIDIA, as well as various graphics shader compilers. Due
to the modular structure, the human readable IR and a set
of helpful tools, development with LLVM is easy and pro-
ductive.

With Polly we are developing a state-of-the-art polyhedral
infrastructure for LLVM, that supports fully automatic trans-
formation of existing programs. Polly detects and extracts
relevant code regions without any human interaction. Since
Polly accepts LLVM-IR as input, it is programming lan-
guage independent and transparently supports constructs
like C++ iterators, pointer arithmetic or goto based loops.

1



Figure 1: Architecture of Polly

It is built around an advanced polyhedral library with full
support for existentially quantified variables and includes a
state-of-the-art dependency analysis. Due to a simple file
interface it is easily possible to apply transformations man-
ually or to use an external optimizer. We use this interface
to integrate Pluto [6], a modern data locality optimizer and
parallelizer. Thanks to integrated SIMD and OpenMP code
generation, Polly automatically takes advantage of existing
and newly exposed parallelism.

In this paper we will focus on concepts of Polly we believe
are new or little discussed in the polyhedral community.

2. IMPLEMENTATION
Polly is designed as a set of compiler internal analysis and
optimization passes. They can be divided into front end,
middle end and back end passes. The front end translates
from LLVM-IR into a polyhedral representation, the middle
end transforms and optimizes this representation and the
back end translates it back to LLVM-IR. In addition, there
exist preparing passes to increase the amount of analyzable
code as well as passes to export and reimport the polyhedral
representation. Figure 1 illustrates the overall architecture.

To optimize a program manually three steps are performed.
First of all the program is translated to LLVM-IR. After-
wards Polly is called to optimize LLVM-IR and finally, tar-
get code is generated. The LLVM-IR representation of a pro-
gram can be obtained from language-specific LLVM based
compilers. clang is a good choice for C/C++/Objective-C,
DragonEgg for FORTRAN and ADA, OpenJDP or VMKit
for Java VM based languages, unladen-swallow for Python
and GHC for Haskell. Polly also provides a drop in replace-
ment for gcc that is called pollycc.

2.1 LLVM-IR to Polyhedral Model
To apply polyhedral optimizations on a program, the first
step that needs to be taken is to find relevant code sections
and create a polyhedral description for them. The code sec-
tions that will be optimized by Polly are static control parts
(SCoPs), the classical domain of polyhedral optimizations.
Extending the polyhedral model and therefore Polly to more
general programs is possible as shown by Benabderrahmane
[5].

2.1.1 Region-based SCoP detection
Polly implements a structured, region-based approach to de-
tect the SCoPs available in a function. It uses a refined ver-
sion of the program structure tree described by Johnson [12].

for (i = 0; i < n + m; i++)

A[i] = i;

Figure 2: A valid syntactic SCoP. Not always a valid
semantic SCoP

A region is a subgraph of the control flow graph (CFG) that
is connected to the remaining graph by only two edges, an
entry edge and an exit edge. Viewed as a unit it does not
change control flow. Hence, it can be modeled as a simple
function call, which can easily be replaced with a call to
an optimized version of the function. A canonical region is
a region that cannot be constructed by merging two adja-
cent smaller regions. A region contains another region if the
nodes of one region are a subset of the nodes of the oth-
er region. A tree is called region tree, if the nodes of it are
canonical regions and the edges are defined by the contains
relation.

To find the SCoPs in a function we look for the maximal re-
gions that are valid SCoPs. Starting from the outermost re-
gion, we look for canonical regions in the region tree that are
valid SCoPs. In case the outermost region is a valid SCoP,
we store it. Otherwise, we check each child. After analyz-
ing the tree, we have a set of maximal canonical regions
that form valid SCoPs. These regions are now combined to
larger non-canonical regions such that, finally, the maximal
non-canonical regions that form valid SCoPs are found.

2.1.2 Semantic SCoPs
In contrast to prevalent approaches based on the abstract
syntax tree (AST), Polly does not require a SCoP to match
any specific syntactic structure. Instead, it analyzes the se-
mantics of a SCoP. We call SCoPs that are detected based
on semantic criteria semantic SCoPs.

A common approach to detect a SCoP is to analyze an AST
representation of the program, that is close to the program-
ming language it is implemented in. In this AST control flow
structures like for loops and conditions are detected. Then
it is checked if they form a SCoP. Common restrictions that
need to be met are the following. There exists a single in-
duction variable for a loop that is incremented from a lower
bound to an upper bound by a stride of one. Upper and
lower bounds need to be expressions that are affine in pa-
rameters and surrounding loop induction variables, where a
parameter is any integer variable that is not modified inside
the SCoP. The only valid statements are assignments that
store the result of an expression to an array element. The ex-
pression itself uses side effect free operators with induction
variables, parameters or array elements as operands. Array
subscripts are affine expressions in induction variables and
parameters. There are various ways to extend this definition
of a SCoP, which we did not include in this basic definition.

The detection of SCoPs as shown in Figure 2 with an AST
based approach is easily possible, however as soon as pro-
grams become more complex and less canonical difficulties
arise. The AST of a modern language is often very expres-
sive, such that there exist numerous ways a program can
be represented. Sometimes different representations can be
canonicalized. However, as soon as goto based loops should

2



be detected, various induction variables exist or expressions
are spread all over the program, sophisticated analyses are
required to check if a program section is a SCoP. Further
difficulties arise through the large amount of implicit knowl-
edge that is needed to understand a programming language.
A simple, often overlooked problem is integer wrapping. As-
suming n and m are unsigned integers of 32 bit width, it is
possible that n + m < n holds, because of the wrapping se-
mantics of C integer arithmetic [11]. The upper bound in the
source code must therefore be represented as n+m mod 232,
but no polyhedral tool we know of models the loop bound
in this way. Further problems can be caused by preproces-
sor macros, aliasing or C++ (operator) overloading. We be-
lieve even standard C99 is too complex to effectively detect
SCoPs in it. Tools like PoCC evade this problem by requiring
valid SCoPs to be explicitly annotated in the source code.
However, this prevents any automatic optimization and sig-
nificantly limits the impact of polyhedral techniques.

Fortunately, after lowering programs to LLVM-IR the com-
plexity is highly reduced and constructs like implicit type
casts become explicit. Furthermore, it is possible to run a
set of LLVM optimization passes, that further canonicalize
the code. As a result, an analysis that detects SCoPs based
on their semantics is possible. LLVM-IR is a very low-level
representation of a program, which does not have loops, but
jumps and gotos and has no arrays or affine expressions,
but pointer arithmetic and three address form operations.
From this representation all necessary information is recom-
puted using advanced compiler internal analyses available
in LLVM. Simple analyses used are loop detection or domi-
nance information to verify a SCoP contains only structured
control flow. More sophisticated ones check for aliasing or
provide information about side effects of function calls.

An especially important aspect is how expressions for the
loop bounds, conditions or array subscripts are recovered.
On LLVM-IR these expressions are split into individual op-
erations, may be partially hoisted out of loops, or are even
further optimized. Optimizations that transform multipli-
cations into shifts or a sequence of additions are very com-
mon. As a result, understanding the effects of calculations on
LLVM-IR is difficult. Fortunately, LLVM provides an anal-
ysis called scalar evolution [8], which calculates closed form
expressions for all scalar integer variables in a program. It
abstracts away all intermediate calculations including cal-
culations that accumulate values over several loop iterations
and describes the value of each scalar as a chain of recurrence
[1]. The chain of recurrence depends only on variables with
values unknown at compile time and variables describing the
loop iteration at which it should be evaluated. As chains of
recurrence are more expressive than affine expressions, the
work left for Polly is to check if a chain of recurrence de-
scribes an affine expression and, if this is the case, translate
it into the corresponding affine expression. This recovered
affine expression can then be used to represent loop bounds,
for example. The same concept is used to recover array ac-
cesses from plain memory loads and stores, because address
arithmetic is integer arithmetic.

As Polly successfully recovers all necessary information from
a low-level representation, there are no restrictions on the
syntactic structure of the program source code. A code sec-

// SCoP with do..while loop

int i = 0;

do {

int b = 2 * i;

int c = b * 3 + 5 * i;

A[c] = i;

i += 2;

} while (i < N);

// SCoP with pointer arithmetic

int A[1024];

int *B = A;

while (B < &A[1024]) {

*B = 1;

++B;

}

Figure 3: Valid semantic SCoPs

tion is accepted as soon as the LLVM analyses can prove
that it has the semantics of a SCoP. As a result, arbitrary
control flow structures are valid if they can be written as a
well-structured set of for-loops and if-conditions with affine
expressions in lower and upper bounds and in the operands
of the comparisons. Furthermore, any set of memory access-
es is allowed as long as they behave like array accesses with
affine subscripts. A loop written with do..while instead
of for or fancy pointer arithmetic can easily be part of a
valid SCoP. To illustrate this we show two examples of valid
SCoPs in Figure 3.

2.2 Polyhedral Model
2.2.1 The integer set library

Polly uses isl, an integer set library developed by Verdoolaege
[17]. Isl natively supports existentially quantified variables
in all its data structures; therefore, Polly also supports them
throughout the whole transformation. This enables Polly
to use accurate operations on Z-polyhedra instead of us-
ing polyhedra in the rationals as approximations of integer
sets. Native support of Z-polyhedra simplified many internal
calculations and we expect it to be especially useful to rep-
resent the modulo semantics of integer wrapping and type
casts.

2.2.2 Composable polyhedral transformations
Polly uses the classical polyhedral description [9] that de-
scribes a SCoP as a set of statements each defined by a do-
main, a schedule and a set of memory accesses. The domain
of a statement is the set of values the induction variables sur-
rounding the statement enumerate. For example, the state-
ment in Figure 2 has domain {[i] : 0 ≤ i ≤ n + m mod 232}.
As the statement only has one memory access A[i], the set
of memory references for array A is the same. A schedule
is a relation which, when applied to the domain, yields the
execution times of the statement’s operations. In the exam-
ple the iterations of the loop on i are independent and can
be executed in parallel. Therefore, assigning execution time
0 to all iterations by {[i] → [0]} is a valid schedule. By us-
ing isl, domains, schedules and memory access sets can be
Z-polyhedra in Polly.

3



In contrast to most existing tools the domain of a statement
cannot be changed in Polly. All transformations need to be
applied on the schedule. There are two reasons for this. First,
we believe it is conceptually the cleanest approach to use the
domain to define the set of different statement instances that
will be executed and to use the schedule for defining their
execution times. As the set of different statement instances
never changes there is no need to change the domain. The
second reason is to obtain compositionality of transforma-
tions. As transformations on SCoPs are described by sched-
ules only, the composition of transformations is simply the
composition of the relations representing the schedules.

Applying transformations only on the schedule is simple for
transformations like loop fusion, loop fission or loop inter-
change. Traditionally, strip mining or loop blocking have
been transformations that required modifications of the do-
main, because in the traditional model schedules are affine
functions, not relations. But with the relational representa-
tion for schedules, these transformations and, we believe, all
other desirable transformations can be described by sched-
ules only. For example, strip mining one dimension by four
can be expressed by {[i]→ [o, i] : ∃e : 4e = o∧o ≤ i ≤ 3+o}.

2.2.3 Export/Import
Polly supports the export and reimport of the polyhedral de-
scription. By importing an updated description with changed
schedules a program can be transformed easily. To prevent
invalid optimizations Polly automatically verifies newly im-
ported schedules. Currently Polly supports the Scoplib ex-
change format, which is used by PoCC1 and Pluto [6]. Un-
fortunately, the Scoplib exchange format is not expressive
enough to store information on existentially quantified vari-
ables, schedules that include inequalities or memory accesses
that touch more than one element. Therefore, we have in-
troduced a simple JSON[7] and isl based exchange format
to experiment with those possibilities.

2.3 Polyhedral Model to LLVM-IR
Polly uses CLooG [4] to translate the polyhedral represen-
tation back into a generic AST. This AST is then translated
into LLVM-IR based loops, conditions and expressions.

2.3.1 Detecting parallel loops
Polly can detect parallel loops automatically and generates,
if requested, thread-level parallel code by inserting calls to
the GNU OpenMP runtime. This is targeted to automatical-
ly take advantage of parallelism present in the original code
or exposed by previously run optimizers. To ensure correct-
ness of generated code Polly does not rely on any information
provided by external optimizers, but independently detects
parallel loops. We present a novel approach how to detect
them.

A common approach2 to detect parallelism is to check before
code generation, if a certain dimension of the iteration space
is carrying dependences. In case it does not, the dimension is
parallel. This approach can only detect fully parallel dimen-
sions. However, during the generation of the generic AST,

1http://pocc.sf.net
2used for example in Pluto

CLooG may split loops such that a single dimension is enu-
merated by several loops. This may happen automatically,
when CLooG optimizes the control flow, or an optimizers
may on purpose generate a schedule that enforces the split-
ting. With the classical approach either all split loops are
detected as parallel or no parallelism is detected at all.

The approach taken in Polly detects parallelism after gen-
erating the generic AST and calculates for each generated
for-loop individually if it can be executed in parallel. This is
achieved by limiting the normal parallelism check to the sub-
set of the iteration space enumerated by the loop. To obtain
this subset we implemented an interface to directly retrieve
it from CLooG. As a result, we do not need to parse the AST
to obtain it. With this enhanced parallelism check parallel
loops in a partial parallel dimension can be executed in par-
allel, even though there remain some sequential loops. This
increases the amount of parallel loops that can be detected
in unoptimized code and removes the need for optimizers to
place parallel and sequential loops in different dimensions.

Polly automatically checks all generated loops and intro-
duces OpenMP parallelism for the outermost parallel loops.
By default it assumes parallel execution is beneficial. Opti-
mizers that can derive that for some loops sequential exe-
cution is faster may provide hints to prevent generation of
OpenMP code. Polly could incorporate such hints during
code generation easily, as they do not infect the correctness
of the generated code.

2.3.2 Trivially SIMDizable loops
In Polly we also introduced the concept of trivially SIMDiz-
able loops. A trivially SIMDizable loop is a loop that is
parallel, does not have any control flow statements in its
body and has a number of iterations that is in the order of
magnitude of the SIMD vector width. If Polly can find such
a loop on the generic AST the loop is not translated into a
loop structure, but into a set of vector instructions with a
width corresponding to the number of loop iterations.

Polyhedral transformations can now easily introduce SIMD
vector code by applying transformations that expose such
trivially SIMDizable loops. There is no need to explicitly
issue SIMD intrinsics an more, as Polly automatically issues
the correct SIMD instructions.

3. EXPERIMENTAL RESULTS
3.1 A hand-optimized example
As an example on how to optimize a SCoP manually we
look at a difficult version of matrix multiplication as shown
in Figure 4. Each memory access has stride one with respect
to a different loop dimension. Therefore, finding an effec-
tive way to SIMDize this code is difficult. By importing a
new schedule, but not changing anything else, we are able
to transform the SCoP into code equivalent to the vector-
ized one in Figure 4. Polly detects the trivially SIMDizable
inner loop and introduces SIMD instructions automatically
to execute it.

Figure 5 shows the benefits of the single transformations that
Polly applies and compares it to the run times of a clang,
GCC and ICC compiled binary. The first run of Polly with

4

http://pocc.sf.net


// Plain version

for (k=0; k < 32; k++)

for (j=0; j < 32; j++)

for (i=0; i < 32; i++)

C[i][j] += A[k][i] * B[j][k];

// Vectorized version

for (k=0; k < 32; k++)

for (j=0; j < 32; j+=4)

for (i=0; i < 32; i++)

C[i][j:j+3] += A[k][i] * B[j:j+3][k];

Figure 4: Matrix multiplication kernel where each
memory access has unit stride with respect to an-
other loop dimension

0

1

2

3

4

5

6

7

8

9

clang -O3

gcc -ffast-math -O3

icc -fast
Polly: Only LLVM -O3

Polly: + Strip mining

Polly: += Vectorization

Polly: += Hoisting

Polly: += Unrolling

S
pe

ed
up

Figure 5: Optimizing non-matching (32x32 float)
matrix multiplication with Polly, clang 2.8, GCC 4.5
and ICC 11.1 on Intel R© CoreTM i5 CPU M 520 @
2.40GHz

only LLVM -O3 shows no change to the execution time of
clang. This is expected, as the only difference is the transla-
tion from LLVM-IR to the polyhedral model and back, which
obviously should not introduce any overhead. The next step
is the strip mining of the j-loop that creates a trivially vec-
torizable innermost loop with four iterations. This is where
the new schedule is imported and, even without SIMDiza-
tion enabled, this yields a small runtime improvement. When
Polly SIMDizes the newly created trivially vectorizable loop
the performance of the ICC compiled binary is reached. The
next huge performance increase is obtained from hoisting the
loads from B out of the innermost loop. LLVM will do this
automatically, if Polly proves that the i-loop is executed at
least once. By increasing the LLVM unroll factors runtime
is further improved, such that finally an 8x the original per-
formance is reached.

3.2 PolyBench optimized with Pluto
Another interesting experiment is an automatic run of Polly
on PolyBench3, a set of computation intensive programs of-
ten used in the polyhedral community. On those benchmarks
Polly extracts the relevant SCoPs and optimizes them au-
tomatically. We compare clang to clang plus Polly without
any optimizations and to clang plus Polly with Pluto based
tiling, but still without vectorization and OpenMP paral-

3http://www.cse.ohio-state.edu/~pouchet/software/
polybench

lelism. For 29 out of 30 benchmarks the runtime of the
programs compiled with Polly, but without any transforma-
tions, is very close to the runtime without Polly. This shows
that there is usually no overhead introduced by the transla-
tion to the polyhedral model; why the performance degrades
for reg detect slightly is currently under investigation. For
one case the runtime is slightly improved, as Polly seems to
expose further optimization opportunities to LLVM. As soon
as Pluto tiling is applied drastic runtime changes appear. For
9 out of 30 benchmarks Pluto tiling is able to significantly
increase the performance, with 6 benchmarks having more
than 3x improvements. We consider achieving considerable
speedups for a first test run with unoptimized Pluto/Polly
interaction quite a success. Improving the Pluto/Polly inter-
action to exploit the full optimization potential of Pluto is
planned future work.

4. RELATED WORK
The work in Polly was inspired by ideas developed in the
Graphite project [16], yet Polly uses novel approaches in
many areas. For instance, Graphite did not include a struc-
tured SCoP detection, even though currently a SCoP detec-
tion similar to the one in Polly is developed. Furthermore,
Graphite works on the GCC intermediate representation,
which is in several areas higher level than LLVM-IR, such
that several constructs like multi-dimensional arrays are eas-
ily available. Internally Graphite still uses a rational polyhe-
dral library and only in some cases relies on an integer lin-
ear programming solver. Furthermore, it does not support
existentially quantified variables throughout the polyhedral
transformations. Graphite uses the classical parallelization
detection before code generation and is not yet closely in-
tegrated with the SIMD or OpenMP code generation. In
contrast to Polly, it has been tested for several years and is
reaching production quality.

The only other compiler with an internal polyhedral opti-
mizer we know of is IBM XL/C. Unfortunately, we could
not find any information on how SCoP detection and code
generation is done. There exists a variety of source to source
transformation tools such as Pluto4 [6], PoCC or LooPo [10].

5. CONCLUSIONS
Powerful polyhedral techniques are available to optimize pro-
grams, but their impact is still limited. The main reasons
are difficulties to optimize existing programs automatical-
ly. With Polly we are developing an infrastructure that not
only is able to optimize C/C++ fully automatically, but al-
so supports a wide range of other programming languages.
Based on a state-of-the-art polyhedral library and dependen-
cy analysis Polly provides integrated OpenMP and SIMD
code generation. We consider it to be an interesting candi-
date for developing new polyhedral optimizations or increase
the impact of existing ones.

Acknowledgements. We would like to thank P. Sadayap-
pan from the Ohio State University, who supported the de-
velopment of Polly for six months, as well as Albert Cohen,
Martin Griebl, Sebastian Pop, and Sven Verdoolaege who
largely affected this work. Finally, we would like to thank

4http://pluto.sf.net

5

http://www.cse.ohio-state.edu/~pouchet/software/polybench
http://www.cse.ohio-state.edu/~pouchet/software/polybench
http://pluto.sf.net


Figure 6: PolyBench 2.0 (with large problem size) optimized with Polly and Pluto tiling compared to clang
2.9rc. Run on Intel R© XeonTM CPU X5670 @ 2.93GHz

Christian Lengauer and Dirk Beyer, who supported Pol-
ly with several university projects. This work was funded
in part by the U.S. National Science Foundation through
awards 0811781 and 0926688.

6. REFERENCES
[1] O. Bachmann, P. S. Wang, and E. V. Zima. Chains of

recurrences - a method to expedite the evaluation of
closed-form functions. In Proceedings of the
international symposium on Symbolic and algebraic
computation, ISSAC ’94, pages 242–249, 1994.

[2] S. Baghdadi, A. Größlinger, and A. Cohen. Putting
Automatic Polyhedral Compilation for GPGPU to
Work. In Proc. of the 15th Workshop on Compilers
for Parallel Computers (CPC’10), July 2010.

[3] M. Baskaran, J. Ramanujam, and P. Sadayappan.
Automatic C-to-CUDA code generation for affine
programs. In Compiler Construction, volume 6011 of
Lecture Notes in Computer Science, pages 244–263.
2010.

[4] C. Bastoul. Code generation in the polyhedral model
is easier than you think. In PACT’13 IEEE
International Conference on Parallel Architecture and
Compilation Techniques, pages 7–16, September 2004.

[5] M.-W. Benabderrahmane, L.-N. Pouchet, A. Cohen,
and C. Bastoul. The polyhedral model is more widely
applicable than you think. In ETAPS International
Conference on Compiler Construction (CC’2010),
pages 283–303, Mar. 2010.

[6] U. Bondhugula, A. Hartono, J. Ramanujam, and
P. Sadayappan. A practical automatic polyhedral
parallelizer and locality optimizer. In Proceedings of
the 2008 ACM SIGPLAN conference on Programming
language design and implementation, PLDI ’08, pages
101–113, 2008.

[7] D. Crockford. The application/json Media Type for
JavaScript Object Notation (JSON). RFC 4627
(Informational), July 2006.

[8] R. A. V. Engelen. Efficient symbolic analysis for
optimizing compilers. In In Proceedings of the

International Conference on Compiler Construction,
ETAPS CC ’O1, pages 118–132, 2001.

[9] S. Girbal, N. Vasilache, C. Bastoul, A. Cohen,
D. Parello, M. Sigler, and O. Temam. Semi-automatic
composition of loop transformations for deep
parallelism and memory hierarchies. International
Journal of Parallel Programming, 34:261–317, 2006.

[10] M. Griebl and C. Lengauer. The loop parallelizer
LooPo. In Languages and Compilers for Parallel
Computing, volume 1239 of Lecture Notes in
Computer Science, pages 603–604. 1997.

[11] ISO. The ANSI C standard (C99). Technical Report
WG14 N1256, ISO/IEC, 1999.

[12] R. Johnson, D. Pearson, and K. Pingali. The program
structure tree: computing control regions in linear
time. In Proceedings of the ACM SIGPLAN 1994
conference on Programming language design and
implementation, PLDI ’94, pages 171–185, 1994.

[13] C. Lattner and V. Adve. LLVM: A compilation
framework for lifelong program analysis &
transformation. Code Generation and Optimization,
IEEE/ACM International Symposium on, 0:75, 2004.

[14] TIOBE Software BV. TIOBE programming
community index. http://www.tiobe.com/index.
php/content/paperinfo/tpci/index.html, Jan. 2011.

[15] T. Risset, S. Derrien, P. Quinton, and S. Rajopadhye.
High-Level Synthesis of Loops Using the Polyhedral
Model. In P. Coussy and A. Morawiec, editors,
High-Level Synthesis : From Algorithm to Digital
Circuit, pages 215–230. 2008.

[16] K. Trifunovic, A. Cohen, D. Edelsohn, F. Li,
T. Grosser, H. Jagasia, R. Ladelsky, S. Pop, J. Sjödin,
and R. Upadrasta. GRAPHITE Two Years After:
First Lessons Learned From Real-World Polyhedral
Compilation. In GCC Research Opportunities
Workshop (GROW’10), Pisa Italy, Jan. 2010.

[17] S. Verdoolaege. Isl: An integer set library for the
polyhedral model. In Mathematical Software - ICMS
2010, volume 6327 of Lecture Notes in Computer
Science, pages 299–302. 2010.

6

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

	Introduction
	Implementation
	LLVM-IR to Polyhedral Model
	Region-based SCoP detection
	Semantic SCoPs

	Polyhedral Model
	The integer set library
	Composable polyhedral transformations
	Export/Import

	Polyhedral Model to LLVM-IR
	Detecting parallel loops
	Trivially SIMDizable loops


	Experimental results
	A hand-optimized example
	PolyBench optimized with Pluto

	Related work
	Conclusions
	References

